Dual Banach algebras: representations and injectivity
نویسندگان
چکیده
منابع مشابه
Dual Banach algebras: representations and injectivity
We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way...
متن کاملDerivations on dual triangular Banach algebras
Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous...
متن کاملModule Amenability of module dual Banach algebras
In this paper we defined the concept of module amenability of Banach algebras and module connes amenability of module dual Banach algebras.Also we assert the concept of module Arens regularity that is different with [1] and investigate the relation between module amenability of Banach algebras and connes module amenability of module second dual Banach algebras.In the following we studythe...
متن کامل$varphi$-Connes amenability of dual Banach algebras
Generalizing the notion of character amenability for Banach algebras, we study the concept of $varphi$-Connes amenability of a dual Banach algebra $mathcal{A}$ with predual $mathcal{A}_*$, where $varphi$ is a homomorphism from $mathcal{A}$ onto $Bbb C$ that lies in $mathcal{A}_*$. Several characterizations of $varphi$-Connes amenability are given. We also prove that the follo...
متن کاملAmenability for dual Banach algebras
We define a Banach algebra A to be dual if A = (A∗) ∗ for a closed submodule A∗ of A∗. The class of dual Banach algebras includes all W ∗-algebras, but also all algebras M(G) for locally compact groups G, all algebras L(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2007
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm178-3-3